Wait until you hear about alignment
Wait till you here about every ascii letter. . .
what about them?
Ascii needs seven bits, but is almost always encoded as bytes, so every ascii letter has a throwaway bit.
Could a kind soul ELI5 this? Well, maybe ELI8. I did quite a bit of programming in the 90-00s as part of my job, although nowadays I’m more of a script kiddie.
A Boolean is a true/false value. It can only be those two values and there be represented by a single bit (1 or 0).
In most languages a Boolean variable occupies the space of a full byte (8 bit) even though only a single of those bits is needed for representing the Boolean.
That’s mostly because computers can’t load a bit. They can only load bytes. Your memory is a single space where each byte has a numeric address. Starting from 0 and going to whatever amount of memory you have available. This is not really true because on most operating systems each process gets a virtual memory space but its true for many microcontrollers. You can load and address each f these bytes but it will always be a byte. That’s why booleans are stored as bytes because youd have to pack them with other data on the same address other wise and that’s getting complicated.
Talking about getting complicated, in C++ a std::vector<bool> is specialized as a bit field. Each of the values in that vector only occupy a single bit and you can get a vector of size 8 in a single byte. This becomes problematic when you want to store references or pointers to one of the elements or when you’re working with them in a loop because the elements are not of type bool but some bool-reference type.
It’s far more often stored in a word, so 32-64 bytes, depending on the target architecture. At least in most languages.
No it isn’t. All statically typed languages I know of use a byte. Which languages store it in an entire 32 bits? That would be unnecessarily wasteful.
C, C++, C#, to name the main ones. And quite a lot of languages are compiled similarly to these.
To be clear, there’s a lot of caveats to the statement, and it depends on architecture as well, but at the end of the day, it’s rare for a
byte
orbool
to be mapped directly to a single byte in memory.Say, for example, you have this function…
public void Foo() { bool someFlag = false; int counter = 0; ... }
The
someFlag
andcounter
variables are getting allocated on the stack, and (depending on architecture) that probably means each one is aligned to a 32-bit or 64-bit word boundary, since many CPUs require that for whole-word load and store instructions, or only support a stack pointer that increments in whole words. If the function were to have multiplebyte
orbool
variables allocated, it might be able to pack them together, if the CPU supports single-byte load and store instructions, but the nextint
variable that follows might still need some padding space in front of it, so that it aligns on a word boundary.A very similar concept applies to most struct and object implementations. A single
byte
orbool
field within a struct or object will likely result in a whole word being allocated, so that other variables and be word-aligned, or so that the whole object meets some optimal word-aligned size. But if you have multiple less-than-a-word fields, they can be packed together. C# does this, for sure, and has some mechanisms by which you can customize field packing.No, in C and C++ a bool is a byte.
since many CPUs require that for whole-word load and store instructions
All modern architectures (ARM, x86 RISC-V) support byte load/store instructions.
or only support a stack pointer that increments in whole words
IIRC the stack pointer is usually incremented in 16-byte units. That’s irrelevant though. If you store a single bool on the stack it would be 1 byte for the bool and 15 bytes of padding.
A single byte or bool field within a struct or object will likely result in a whole word being allocated, so that other variables and be word-aligned
Again, no. I think you’ve sort of heard about this subject but haven’t really understood it.
The requirement is that fields are naturally aligned (up to the machine word size). So a byte needs to be byte-aligned, 2-bytes needs to be 2-byte aligned, etc.
Padding may be inserted to achieve that but that is padding it doesn’t change the size of the actual bool, and it isn’t part of the bool.
But if you have multiple less-than-a-word fields, they can be packed together.
They will be, if it fits the alignment requirements. Create a struct with 8 bools. It will take up 8 bytes no matter what your packing setting is. They even give an example:
If you specify the default packing size, the size of the structure is 8 bytes. The two bytes occupy the first two bytes of memory, because bytes must align on one-byte boundaries.
They used
byte
here but it’s the same forbool
because a bool is one byte.I’m really surprised how common this misconception is.
It’s not wasteful, it’s faster. You can’t read one byte, you can only read one word. Every decent compiler will turn booleans into words.
You can’t read one byte
lol what. You can absolutely read one byte: https://godbolt.org/z/TeTch8Yhd
On ARM it’s
ldrb
(load register byte), and on RISC-V it’slb
(load byte).Every decent compiler will turn booleans into words.
No compiler I know of does this. I think you might be getting confused because they’re loaded into registers which are machine-word sized. But in memory a
bool
is always one byte.Sorry, but you’re very confused here.
You said you can’t read one byte. I showed that you can. Where’s the confusion?
Internally it will still read a whole word. Because the CPU cannot read less than a word. And if you read the ARM article you linked, it literally says so.
Thus any compiler worth their salt will align all byte variables to words for faster memory access. Unless you specifically disable such behaviour. So yeah, RTFM :)
Wrong again. It depends on the CPU. They can absolutely read a single byte and they will do if you’re reading from non-idempotent memory.
If you’re reading from idempotent memory they won’t read a byte or a word. They’ll likely read a whole cache line (usually 64 bytes).
And if you read the ARM article you linked, it literally says so.
Where?
Thus any compiler worth their salt will align all byte variables to words for faster memory access.
No they won’t because it isn’t faster. The CPU will read the whole cache line that contains the byte.
RTFM
Well, I would but no manual says that because it’s wrong!
Depending on the language
And compiler. And hardware architecture. And optimization flags.
As usual, it’s some developer that knows little enough to think the walls they see around enclose the entire world.
I don’t think so. Apart from dynamically typed languages which need to store the type with the value, it’s always 1 byte, and that doesn’t depend on architecture (excluding ancient or exotic architectures) or optimisation flags.
Which language/architecture/flags would not store a bool in 1 byte?
things that store it as word size for alignment purposes (most common afaik), things that pack multiple books into one byte (normally only things like bool sequences/structs), etc
things that store it as word size for alignment purposes
Nope. bools only need to be naturally aligned, so 1 byte.
If you do
struct SomeBools { bool a; bool b; bool c; bool d; };
its 4 bytes.
sure, but if you have a single bool in a stack frame it’s probably going to be more than a byte. on the heap definitely more than a byte
but if you have a single bool in a stack frame it’s probably going to be more than a byte.
Nope. - if you can’t read RISC-V assembly, look at these lines
sb a5,-17(s0) ... sb a5,-18(s0) ... sb a5,-19(s0) ...
That is it storing the bools in single bytes. Also I only used RISC-V because I’m way more familiar with it than x86, but it will do the same thing.
on the heap definitely more than a byte
Nope, you can happily
malloc(1)
and store a bool in it, ormalloc(4)
and store 4 bools in it. A bool is 1 byte. Consider this a TIL moment.c++ guarantees that calls to malloc are aligned https://en.cppreference.com/w/cpp/memory/c/malloc .
you can call
malloc(1)
ofc, but callingmalloc_usable_size(malloc(1))
is giving me 24, so it at least allocated 24 bytes for my 1, plus any tracking overheadyeah, as I said, in a stack frame. not surprised a compiler packed them into single bytes in the same frame (but I wouldn’t be that surprised the other way either), but the system v abi guarantees at least 4 byte alignment of a stack frame on entering a fn, so if you stored a single bool it’ll get 3+ extra bytes added on the next fn call.
computers align things. you normally don’t have to think about it. Consider this a TIL moment.